Back to Search Start Over

New application of lanthanum-modified bentonite (Phoslock®) for immobilization of arsenic in sediments

Authors :
Dan Wang
Juan Lin
Pengling Shi
Youwei Yang
Jingzhen Cui
Mingyi Ren
Yan Wang
Source :
Environmental Science and Pollution Research. 28:2052-2062
Publication Year :
2020
Publisher :
Springer Science and Business Media LLC, 2020.

Abstract

Lanthanum-modified bentonite (LMB, Phoslock®) is a well-known capping agent for phosphorus immobilization in sediments. Herein, LMB was used to immobilize As in sediments. Batch capacity experiments for arsenate and arsenite adsorption were carried out to obtain adsorption isotherms and kinetics using the Langmuir and Freundlich model calculations. High-resolution (HR) diffusive gradients in thin films (DGT) were applied to monitor the changes of weakly bound As fraction near sediment-water interface (SWI). The interaction of As(III) and As(V) with LMB was influenced by pH and initial mineral composition. As(V) was more obviously adsorbed than As(III) at pH 4 to 9, with mean adsorption of 3.89 mg g-1 and 0.04 mg g-1, respectively, while at pH > 9 As(III) was preferentially adsorbed. After LMB amendment for 2 months, the maximum As removal efficiency in the pore and overlying water reached 84.5% and 99.3%, respectively. The capping agent remained stable in the top sediments, while the maximum DGT labile As content decreased to 0.89 and 0.51 μg L-1 in dosage-and time-treatments. The As concentration inflection point moved down to a deeper layer. As species changed from labile exchangeable-As to Fe-oxide-bound and residual As. The proportion of mobile As finally decreased to 10.5% of the total As in the upper 20-mm layer sediment. The increase of Kd (the distribution coefficient at SWI) and k1 (adsorption rate constant) and the decrease of Tc (response time of (de)sorption) in the DGT-induced fluxes model (DIFS) indicated the time-dependent impediment of As release from the sediment due to LMB immobilization.

Details

ISSN :
16147499 and 09441344
Volume :
28
Database :
OpenAIRE
Journal :
Environmental Science and Pollution Research
Accession number :
edsair.doi...........e29988a3ee03e9000da3071031233460
Full Text :
https://doi.org/10.1007/s11356-020-10565-x