Back to Search Start Over

Induced telluric currents play a major role in the interpretation of geomagnetic variations

Authors :
Liisa Juusola
Ari Viljanen
Heikki Vanhamäki
Maxim Smirnov
Publication Year :
2020
Publisher :
Copernicus GmbH, 2020.

Abstract

Geomagnetically induced currents (GIC) are directly described by ground electric fields, but estimating them is time-consuming and requires knowledge of the ionospheric currents as well as the three-dimensional distribution of the electrical conductivity of the Earth. The time derivative of the horizontal component of the ground magnetic field (dH/dt) is closely related to the electric field via Faraday's law, and provides a convenient proxy for the GIC risk. However, forecasting dH/dt still remains a challenge. We use 25 years of 10 s data from the North European International Monitor for Auroral Geomagnetic Effects (IMAGE) magnetometer network to show that part of this problem stems from the fact that instead of the primary ionospheric currents, the measured dH/dt is dominated by the signature from the secondary induced telluric currents nearly at all IMAGE stations. The largest effects due to telluric currents occur at coastal sites close to highly-conducting ocean water and close to near-surface conductivity anomalies. The secondary magnetic field contribution to the total field is a few tens of percent, in accordance with earlier studies. Our results have been derived using IMAGE data and are thus only valid for the involved stations. However, it is likely that the main principle also applies to other areas. Consequently, it is recommended that the field separation into internal (telluric) and external (ionospheric and magnetospheric) parts is performed whenever feasible, i.e., a dense observation network is available.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........e23440b57a60a3bcff3382311f0b4645