Back to Search Start Over

Numerical Modeling and Experimental Investigation of Improved Mixing From Both Coriolis Effect and Go¨rtler Vortices in Rotating Zigzag Microchannel

Authors :
Yong Ren
Wallace Woon-Fong Leung
Source :
Volume 6: Fluids and Thermal Systems; Advances for Process Industries, Parts A and B.
Publication Year :
2011
Publisher :
ASMEDC, 2011.

Abstract

The flow pattern and mixing performance in different geometries of microchannels are investigated. A study for the zigzag shape channel under both stationary and rotation condition was investigated. The results are compared to the straight channel. Both numerical model via CFD and experiments are agreeing with each other. It is found when the channel is under rotation, the mixing performance is better than the stationary condition due to rotation induced Coriolis effect. As the rotation speed increases from 300rpm to 900rpm, an improved mixing performance can be further obtained. Our study results also demonstrate that zigzag channel can provide relatively better mixing, because the successive bending design can lead to secondary flow in the cross sectional directions due to Gortler vortices generated from centrifugal effect as the flow negotiates the “turns” or “bends” of the channel, and this adds to mixing in addition to that due to aforementioned Coriolis effect. An analysis reveals that zigzag shape channel requires more pressure drop when compared with the straight channel in order to maintain the continuous throughflow due to the pressure/head loss as the flow encounters each bend and these losses become additive. This adds to the cost for the improved mixing from the Gortler vortices.Copyright © 2011 by ASME

Details

Database :
OpenAIRE
Journal :
Volume 6: Fluids and Thermal Systems; Advances for Process Industries, Parts A and B
Accession number :
edsair.doi...........e1f02f7bd1edcbb5d0705a40c39ee0e5
Full Text :
https://doi.org/10.1115/imece2011-64712