Back to Search Start Over

Deuterium–tritium plasmas in novel regimes in the Tokamak Fusion Test Reactor

Authors :
J. Mcchesney
E. J. Strait
S. H. Batha
R. E. Bell
Harold P. Furth
D.K. Owens
V. Yavorski
H. H. Duong
I. Semenov
A. Kumar
J. S. Kim
Michael A. Beer
Stanley Kaye
Leonid E. Zakharov
Masaaki Yamada
E.D. Fredrickson
K. L. Wong
A. von Halle
D.C. McCune
M.G. Bell
Larry R. Grisham
A. V. Krasilnikov
E. Ruskov
W. Stodiek
R. O. Dendy
J. C. Hosea
P. C. Efthimion
Guoyong Fu
M. Hughes
G. A. Navratil
A. Belov
N. T. Lam
Robert Budny
B.P. LeBlanc
Hyeon K. Park
J. Manickam
T. Stevenson
G. L. Schmidt
W. Park
James R. Wilson
G. Mckee
J. Machuzak
Richard Majeski
Manfred Bitter
H. W. Herrmann
M. Sasao
D. R. Ernst
J. Callen
Chio-Zong Cheng
R. K. Fisher
Yoshio Nagayama
S. A. Sabbagh
S. D. Scott
S. von Goeler
F. M. Levinton
Nikolai Gorelenkov
K. W. Hill
G. Rewoldt
D. R. Mikkelsen
R. T. Walters
William Tang
R.J. Hawryluk
G. Schilling
S. F. Paul
E. J. Synakowski
S. S. Medley
Nathaniel J. Fisch
M. Williams
B. Rice
K. M. McGuire
Roscoe White
A. T. Ramsey
J. D. Strachan
T. Senko
G. Taylor
B. Breizman
H. Takahashi
S. Bernabei
R. Kaita
G. A. Wurden
W. A. Houlberg
D. Mueller
B. C. Stratton
Michael E. Mauel
Michael W Kissick
A. L. Roquemore
C.H. Skinner
P. Phillips
V.Ya. Goloborod'ko
S. Cauffman
M. C. Zarnstorff
William Dorland
J. Hogan
E. Mazzucato
D. L. Jassby
S. V. Mirnov
F. C. Jobes
M. H. Redi
M. Okabayashi
J. Kesner
Kenneth M. Young
W. W. Heidbrink
Dale Meade
J. H. Rogers
M. E. Thompson
S.N. Reznik
M. Phillips
Gregory W. Hammett
H. Berk
C. E. Bush
R. J. Fonck
H. Evenson
N. L. Bretz
Z. Chang
D.K. Mansfield
Raffi Nazikian
R. Wieland
Stewart Zweben
B. Hooper
H.W. Kugel
David Johnson
M. P. Petrov
D. S. Darrow
M. C. Herrmann
C. Ludescher
Choong-Seock Chang
P. H. LaMarche
C. K. Phillips
Shoujun Wang
B. Grek
M. Osakabe
Source :
Physics of Plasmas. 4:1714-1724
Publication Year :
1997
Publisher :
AIP Publishing, 1997.

Abstract

Experiments in the Tokamak Fusion Test Reactor (TFTR) have explored several novel regimes of improved tokamak confinement in deuterium-tritium (D-T) plasmas, including plasmas with reduced or reversed magnetic shear in the core and high-current plasmas with increased shear in the outer region (high-l{sub i}). New techniques have also been developed to enhance the confinement in these regimes by modifying the plasma-limiter interaction through in-situ deposition of lithium. In reversed-shear plasmas, transitions to enhanced confinement have been observed at plasma currents up to 2.2 MA (q{sub a} {approx} 4.3), accompanied by the formation of internal transport barriers, where large radial gradients develop in the temperature and density profiles. Experiments have been performed to elucidate the mechanism of the barrier formation and its relationship with the magnetic configuration and with the heating characteristics. The increased stability of high-current, high-l{sub i} plasmas produced by rapid expansion of the minor cross-section, coupled with improvement in the confinement by lithium deposition has enabled the achievement of high fusion power, up to 8.7 MW, with D-T neutral beam heating. The physics of fusion alpha-particle confinement has been investigated in these regimes, including the interactions of the alphas with endogenous plasma instabilities and externally applied waves in the ion cyclotron range of frequencies. In D-T plasmas with q{sub 0} > 1 and weak magnetic shear in the central region, a toroidal Alfven eigenmode instability driven purely by the alpha particles has been observed for the first time. The interactions of energetic ions with ion Bernstein waves produced by mode-conversion from fast waves in mixed-species plasmas have been studied as a possible mechanism for transferring the energy of the alphas to fuel ions.

Details

ISSN :
10897674 and 1070664X
Volume :
4
Database :
OpenAIRE
Journal :
Physics of Plasmas
Accession number :
edsair.doi...........e0b30c18f6c43696bb999d986f530232