Back to Search
Start Over
Form factor-free, printed power sources
- Source :
- Energy Storage Materials. 29:92-112
- Publication Year :
- 2020
- Publisher :
- Elsevier BV, 2020.
-
Abstract
- The upcoming ubiquitous electronics era, which will find widespread popularity of flexible/wearable electronics, self-powered devices, and the Internet of Things (IoT), stimulates us to develop a new concept of advanced power sources beyond currently available battery technologies. Among several approaches to reach this goal, printed power sources with various form factors and flexibility have recently garnered considerable attention as a promising system. The form factor-free, printed power sources, driven by their design diversity, shape/performance compatibility with electronics, and scalable/low-cost processability, enable monolithic/seamless integration with complex/unconventional-shaped electronic devices, in comparison to conventional rigid/bulky counterparts. Here, we review the current status and challenges of the form factor-free, printed power sources, with a focus on their materials development. Various printing techniques and their process parameters exploited for the printed power sources are briefly described. Subsequently, ink materials and chemistry of major cell components are discussed. Based on the understanding of the printing techniques and materials, applications of the printed power sources are overviewed to highlight their exceptional shape aesthetics and electrochemical characteristics in the integrated electronics. Finally, we propose development directions and outlook of the form factor-free, printed power sources as a device-customized energy storage system, along with prospects of their future applications.
- Subjects :
- Materials science
Inkwell
Renewable Energy, Sustainability and the Environment
business.industry
Integrated electronics
Electrical engineering
Design diversity
Energy Engineering and Power Technology
02 engineering and technology
010402 general chemistry
021001 nanoscience & nanotechnology
01 natural sciences
Energy storage
0104 chemical sciences
Scalability
General Materials Science
Electronics
0210 nano-technology
Internet of Things
business
Wearable technology
Subjects
Details
- ISSN :
- 24058297
- Volume :
- 29
- Database :
- OpenAIRE
- Journal :
- Energy Storage Materials
- Accession number :
- edsair.doi...........df2e457e36f00259c551b00d4f4f202b
- Full Text :
- https://doi.org/10.1016/j.ensm.2020.04.007