Back to Search Start Over

Urban flow pattern mining based on multi-source heterogeneous data fusion and knowledge graph embedding

Authors :
Shenggong Ji
Fei Teng
Junbo Zhang
Shengdong Du
Peng Xie
Tianrui Li
Jia Liu
Source :
IEEE Transactions on Knowledge and Data Engineering. :1-1
Publication Year :
2021
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2021.

Abstract

Urban flow analysis is an essential research for smart city construction, in which urban flow pattern analysis focuses on the continuous state of urban flow. How to mine, store and reuse traffic patterns from urban multi-source heterogeneous big data is challenging. Therefore, this paper proposes a knowledge mining network for regional flow pattern to mine and store the urban flow pattern. The proposed model consists of two modules. In the first module, the features of the region and its flow pattern are extracted as the entity and relation, respectively. In the second module, POI features are modeled to enhance the embedding representation of relation and entity. Based on the translation distance method, the knowledge triplets of regional flow patterns are mined. Finally, the proposed model is compared with some benchmark methods using Chengdu Didi order and POI datasets. Experimental results show that the proposed model is effective. In addition, the knowledge triplets are visualized and some application examples are introduced.

Details

ISSN :
23263865 and 10414347
Database :
OpenAIRE
Journal :
IEEE Transactions on Knowledge and Data Engineering
Accession number :
edsair.doi...........df27edc583ec11ab5aef78adad4f7195
Full Text :
https://doi.org/10.1109/tkde.2021.3098612