Back to Search Start Over

An improved Hardy inequality for a nonlocal operator

Authors :
Boumediene Abdellaoui
Fethi Mahmoudi
Source :
Discrete and Continuous Dynamical Systems. 36:1143-1157
Publication Year :
2015
Publisher :
American Institute of Mathematical Sciences (AIMS), 2015.

Abstract

Let $0 < s < 1$ and $1< p < 2$ be such that $ps < N$ and let $\Omega$ be a bounded domain containing the origin. In this paper we prove the following improved Hardy inequality: Given $1 \le q < p$, there exists a positive constant $C\equiv C(\Omega, q, N, s)$ such that $$ \int\limits_{\mathbb{R}^N}\int\limits_{\mathbb{R}^N} \, \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+ps}}\,dx\,dy - \Lambda_{N,p,s} \int\limits_{\mathbb{R}^N} \frac{|u(x)|^p}{|x|^{ps}}\,dx$$$$\geq C \int\limits_{\Omega}\int\limits_{\Omega}\frac{|u(x)-u(y)|^p}{|x-y|^{N+qs}}dxdy $$ for all $u \in \mathcal{C}_0^\infty({\Omega})$. Here $\Lambda_{N,p,s}$ is the optimal constant in the Hardy inequality (1.1).

Details

ISSN :
10780947
Volume :
36
Database :
OpenAIRE
Journal :
Discrete and Continuous Dynamical Systems
Accession number :
edsair.doi...........df1c58c30c1ed9210e78bc496eb93d53
Full Text :
https://doi.org/10.3934/dcds.2016.36.1143