Back to Search
Start Over
Fusion of linear base classifiers in geometric space
- Source :
- Knowledge-Based Systems. 227:107231
- Publication Year :
- 2021
- Publisher :
- Elsevier BV, 2021.
-
Abstract
- Ensembles of classifiers deserve attention because their stability and accuracy are usually superior compared to the single classifier. One of the aspects regarding the construction of multiple classifier systems is the fusion of each base model output. The state-of-the-art fusion of base classifiers approaches uses class labels, a rank array, or a score function to determine the classifier ensemble’s final decision. On the other hand, in this study, we use the base classifiers’ decision boundaries in the fusion process. Therefore the integration process occurs in a geometric space. In this paper, a new definition of the function that measures the central tendency has been proposed. This function allows integrating any number of linear base classifiers in the geometry space, removing the limit on the number of these classifiers in the ensemble. The limit on the number of base classifiers is noticeable in our earlier works. The proposal was compared with other fusion approaches to base classifiers outputs. The experiments on multiple binary datasets from UCI and KEEL datasets repositories demonstrate the effectiveness of our proposal of the fusion process in the geometric space. To discuss the results of our experiments, we use standard and imbalanced datasets separately.
- Subjects :
- Information Systems and Management
Rank (linear algebra)
business.industry
Computer science
Stability (learning theory)
Score
Pattern recognition
02 engineering and technology
Function (mathematics)
Base (topology)
Management Information Systems
ComputingMethodologies_PATTERNRECOGNITION
Ensembles of classifiers
Artificial Intelligence
020204 information systems
Classifier (linguistics)
0202 electrical engineering, electronic engineering, information engineering
020201 artificial intelligence & image processing
Artificial intelligence
Limit (mathematics)
business
Software
Subjects
Details
- ISSN :
- 09507051
- Volume :
- 227
- Database :
- OpenAIRE
- Journal :
- Knowledge-Based Systems
- Accession number :
- edsair.doi...........de732d8b5ccc7b69994c46de7e32d2ba
- Full Text :
- https://doi.org/10.1016/j.knosys.2021.107231