Back to Search Start Over

Polar heat transport enhancement in sub-glacial oceans on icy moons

Authors :
Robert Hartmann
Richard J.A.M. Stevens
Detlef Lohse
Roberto Verzicco
Publication Year :
2023
Publisher :
Copernicus GmbH, 2023.

Abstract

The icy moons of the solar system show several phenomena in their polar regions like active geysers or a thinner crust than at the equator, all of which might be related to a non-uniform heat transport in the underlying ocean of liquid water. We investigate the potential for local heat transport enhancement in these sub-glacial oceans by conducting direct numerical simulations of rotating Rayleigh-Bénard convection (RRBC) in spherical geometry at a water-like Prandtl number Pr=4.38, Rayleigh number Ra=106, and Rossby number ∞≥Ro≥0.03 (or in terms of the Ekman number ∞≥Ek≥6.28·10-5). We probe two ratios of inner to outer radius η=ri/ro=0.6 and η=0.8, which is closer to the presumed conditions on most icy moons, for different gravitational laws g(r)∝rγ. The simulations cover the full range from zero to rapid rotation close to where convection ceases, and therefore cross the rotation-affected regime of intermediate rotation rates with a potentially enhanced dimensionless heat transport Nu>Nunon–rot as known from planar RRBC.Although the global heat transport does not increase (Nuglobal≤Nunon–rot), we find an enhancement up to 28% at high latitudes around the poles (Nuhl>Nunon–rot), which is compensated by a reduced heat transport at low latitudes around the equator (Null

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........dddc778226bba0ace3925165f88718d0