Back to Search
Start Over
Effect of the redox properties of support oxide over cobalt-based catalysts in high temperature water-gas shift reaction
- Source :
- Molecular Catalysis. 433:145-152
- Publication Year :
- 2017
- Publisher :
- Elsevier BV, 2017.
-
Abstract
- The present study focused on the effect of reducibility of support oxide (CeO2, ZrO2, TiO2, and Al2O3) over the activity of cobalt-based catalysts in high temperature water-gas shift (HT-WGS) reaction. The H2 temperature programmed reduction (TPR) and CO chemisorption characterization results showed that dispersion of cobalt over the support was increased with the increase of the reducibility of the support oxide. The supported catalysts were characterized by X-ray diffraction (XRD) and N2 adsorption–desorption. The results indicated that the Co/CeO2 catalyst possesses the highest surface area and metal dispersion in the series; Co/CeO2 > Co/ZrO2 > Co/Al2O3 > Co/TiO2. The activity results showed that Co/CeO2 was the highly active among the tested catalysts in the temperature range of 350–550 °C. Moreover, the time-on-stream study revealed that the Co/CeO2 catalyst was relatively more stable than cobalt supported on ZrO2 and Al2O3 oxides. The excellent activity and stability of the Co/CeO2 catalyst were attributed to its high metal dispersion, which is found strongly dependent on the reducible nature of the support.
- Subjects :
- Materials science
Process Chemistry and Technology
Inorganic chemistry
Oxide
chemistry.chemical_element
02 engineering and technology
Atmospheric temperature range
010402 general chemistry
021001 nanoscience & nanotechnology
01 natural sciences
Catalysis
Water-gas shift reaction
0104 chemical sciences
chemistry.chemical_compound
chemistry
Chemisorption
Physical and Theoretical Chemistry
Temperature-programmed reduction
0210 nano-technology
Dispersion (chemistry)
Cobalt
Subjects
Details
- ISSN :
- 24688231
- Volume :
- 433
- Database :
- OpenAIRE
- Journal :
- Molecular Catalysis
- Accession number :
- edsair.doi...........dd5b4be06997777895ba5d2a99369788
- Full Text :
- https://doi.org/10.1016/j.mcat.2016.12.028