Back to Search
Start Over
Using uncertainty to improve pressure field reconstruction from PIV/PTV flow measurements
- Source :
- Experiments in Fluids. 61
- Publication Year :
- 2020
- Publisher :
- Springer Science and Business Media LLC, 2020.
-
Abstract
- A novel pressure reconstruction method is proposed to use the uncertainty information to improve the instantaneous pressure fields from velocity fields measured using particle image velocimetry (PIV) or particle tracking velocimetry (PTV). First, the pressure gradient fields are calculated from velocity fields, while the local and instantaneous pressure gradient uncertainty is estimated from the velocity uncertainty using a linear-transformation-based algorithm. The pressure field is then reconstructed by solving an overdetermined linear system which involves the pressure gradients and boundary conditions. This linear system is solved with generalized least squares (GLS) which incorporates the previously estimated variances and covariances of the pressure gradient errors as inverse weights to optimize the reconstructed pressure field. The method was validated with synthetic velocity fields of a 2D pulsatile flow, and the results show significantly improved pressure accuracy. The pressure error reduction by GLS was 50% with 9.6% velocity errors and 250% with 32.1% velocity errors compared to the existing baseline method of solving the pressure Poisson equation (PPE). The GLS was more robust to the velocity errors and provides greater improvement with spatially correlated velocity errors. For experimental validation, the volumetric pressure fields were evaluated from the velocity fields measured using 3D PTV of a laminar pipe flow with a Reynolds number of 630 and a transitional pipe flow with a Reynolds number of 3447. The GLS reduced the median absolute pressure errors by as much as 96% for the laminar pipe flow compared to PPE. The mean pressure drop along the pipe predicted by GLS was in good agreement with the empirical estimation using Darcy–Weisbach equation for the transitional pipe flow.
- Subjects :
- Fluid Flow and Transfer Processes
Computational Mechanics
General Physics and Astronomy
Reynolds number
Laminar flow
Generalized least squares
Mechanics
01 natural sciences
010305 fluids & plasmas
law.invention
Pipe flow
Physics::Fluid Dynamics
010309 optics
symbols.namesake
Pressure measurement
Particle image velocimetry
Mechanics of Materials
law
Particle tracking velocimetry
0103 physical sciences
symbols
Pressure gradient
Mathematics
Subjects
Details
- ISSN :
- 14321114 and 07234864
- Volume :
- 61
- Database :
- OpenAIRE
- Journal :
- Experiments in Fluids
- Accession number :
- edsair.doi...........dccd6066161c79cdc69fd005dde1847d