Back to Search Start Over

Intelligent Analysis for Evaluating Physical Degradation Using Acoustic Emission

Authors :
Toshiyuki Hashida
Kazuhisa Sato
Masayuki Numao
Ken-ichi Fukui
Junichiro Mizusaki
Source :
ECS Transactions. 57:571-580
Publication Year :
2013
Publisher :
The Electrochemical Society, 2013.

Abstract

We previously developed a technique by which to measure the mechanical damage of SOFC using the acoustic emission (AE) method. In the present paper, we applied an adapted Self-Organizing Map (SOM), which is an artificial neural network model, to produce a cluster map reflecting the similarity of AE events. The obtained map visualized the change in occurrence patterns of similar AE events, revealing six phases of damage progress. Moreover, we inferred mechanical interactions among components of SOFC from a series of AE events by our proposed data mining method called co-occurring cluster mining. Our methods provide a common foundation for a comprehensive damage evaluation system and a damage monitoring system.

Details

ISSN :
19386737 and 19385862
Volume :
57
Database :
OpenAIRE
Journal :
ECS Transactions
Accession number :
edsair.doi...........dc90e4df01c8bd2e77cb641a555df4fc