Back to Search Start Over

A multi-task and multi-scale convolutional neural network for automatic recognition of woven fabric pattern

Authors :
Ruru Pan
Weidong Gao
Wentao He
Jingan Wang
Zhou Jian
Shuo Meng
Source :
Journal of Intelligent Manufacturing. 32:1147-1161
Publication Year :
2020
Publisher :
Springer Science and Business Media LLC, 2020.

Abstract

The recognition of woven fabric pattern is a crucial task for mass manufacturing and quality control in the textile industry. Traditional methods based on image processing have some limitations on accuracy and stability. In this paper, an automatic method is proposed to jointly realize yarn location and weave pattern recognition. First, a new big fabric dataset is established by a portable wireless device. The dataset contains wide kinds of fabrics and detailed fabric structure parameters. Then, a novel multi-task and multi-scale convolutional neural network (MTMSnet) is proposed to predict the location maps of yarns and floats. By adopting the multi-task structure, the MTMSnet can better learn the related features between yarns and floats. Finally, the weave pattern and basic weave repeat are recognized by combining the yarn and float location maps. Extensive experimental results on various kinds of fabrics indicate that the proposed method achieves high accuracy and quality in weave pattern recognition.

Details

ISSN :
15728145 and 09565515
Volume :
32
Database :
OpenAIRE
Journal :
Journal of Intelligent Manufacturing
Accession number :
edsair.doi...........dc34cb7c32dce0b960ebce3135ade4f0
Full Text :
https://doi.org/10.1007/s10845-020-01607-9