Back to Search
Start Over
Basic Linear Structure
- Source :
- Open Problems in the Geometry and Analysis of Banach Spaces ISBN: 9783319335711
- Publication Year :
- 2016
- Publisher :
- Springer International Publishing, 2016.
-
Abstract
- A sequence {e i }i = 1 ∞ in a Banach space X is called a Schauder basis for X if for each x ∈ X there is a unique sequence of scalars {α i }i = 1 ∞ such that \(x =\sum _{ i=1}^{\infty }\alpha _{i}e_{i}\). If the convergence of this series is unconditional for all x ∈ X (i.e., any rearrangement of it converges), we say that the Schauder basis is unconditional . This is equivalent to say that under any permutation \(\pi: \mathbb{N} \rightarrow \mathbb{N}\), the sequence {eπ(i)}i = 1 ∞ is again a basis of X.
Details
- ISBN :
- 978-3-319-33571-1
- ISBNs :
- 9783319335711
- Database :
- OpenAIRE
- Journal :
- Open Problems in the Geometry and Analysis of Banach Spaces ISBN: 9783319335711
- Accession number :
- edsair.doi...........da86c3d1350f68f28b9230b21c8aafb9
- Full Text :
- https://doi.org/10.1007/978-3-319-33572-8_1