Back to Search Start Over

Basic Linear Structure

Authors :
Vicente Montesinos
Václav Zizler
Antonio J. Guirao
Source :
Open Problems in the Geometry and Analysis of Banach Spaces ISBN: 9783319335711
Publication Year :
2016
Publisher :
Springer International Publishing, 2016.

Abstract

A sequence {e i }i = 1 ∞ in a Banach space X is called a Schauder basis for X if for each x ∈ X there is a unique sequence of scalars {α i }i = 1 ∞ such that \(x =\sum _{ i=1}^{\infty }\alpha _{i}e_{i}\). If the convergence of this series is unconditional for all x ∈ X (i.e., any rearrangement of it converges), we say that the Schauder basis is unconditional . This is equivalent to say that under any permutation \(\pi: \mathbb{N} \rightarrow \mathbb{N}\), the sequence {eπ(i)}i = 1 ∞ is again a basis of X.

Details

ISBN :
978-3-319-33571-1
ISBNs :
9783319335711
Database :
OpenAIRE
Journal :
Open Problems in the Geometry and Analysis of Banach Spaces ISBN: 9783319335711
Accession number :
edsair.doi...........da86c3d1350f68f28b9230b21c8aafb9
Full Text :
https://doi.org/10.1007/978-3-319-33572-8_1