Back to Search
Start Over
TU-F-CAMPUS-J-03: Evaluation of a New GE Device-Less Cine 4D-CT
- Source :
- Medical Physics. 42:3645-3645
- Publication Year :
- 2015
- Publisher :
- Wiley, 2015.
-
Abstract
- Purpose: Standard cine 4D-CT (S-4DCT) is the cine CT scan of the thorax followed by image sorting with the respiratory signal recorded by the RPM. Although the feasibility of cine 4D-CT without RPM or device-less 4DCT (DL-4DCT) has been reported in a laboratory setting, the only commercial implementation of DL-4DCT was made recently by GE based on the measurements of the lung, body and air area and density. We report the initial results of this new DL-4DCT on its determination of gross tumor volume (GTV). Methods: 30 stereotactic body radiation therapy (SBRT) patients with NSCLC were included in the study. All patients received the S-4DCT for their treatment planning. Their cine CT data without the respiratory signal from RPM were submitted to the DL-4DCT. The DL-4DCT image quality was assessed in reference to S-4DCT. Using maximum intensity projection (MIP) images, the GTVs of the S-4DCT and DL-4DCT were compared on a subset of 9 patients whose tumors in the low density lung regions could be contoured using a region growing algorithm in MIM without contouring bias from the user. A lower threshold of −424 HU was used for all patients and other algorithm parameters were held constant for each patient. Results: The DL-4DCT was able to produce the 4DCT images on 29 out of the 30 SBRT cases. One case failed due to the enhanced calcification surrounding both the breast implants. The GTVs determined on the 9 patients with DL-4DCT were 4.2 ± 4.8% smaller than the GTVs with S-4DCT. However, this was statistically insignificant (p=0.15). The Dice similarity coefficients were 95.1 ± 1.8%. The image quality of DL-4DCT and S-4DCT was similar on the 29 cases. Conclusion: The first commercial DL-4DCT was promising in generating 4D-CT images without a respiratory monitoring device in this preliminary study of 30 patients.
Details
- ISSN :
- 00942405
- Volume :
- 42
- Database :
- OpenAIRE
- Journal :
- Medical Physics
- Accession number :
- edsair.doi...........d9c20c6682c0e1133877f3048d7e16a9
- Full Text :
- https://doi.org/10.1118/1.4925823