Back to Search
Start Over
Microfluidic nano-scale qPCR enables ultra-sensitive detection of SARS-CoV-2
- Publication Year :
- 2020
- Publisher :
- Cold Spring Harbor Laboratory, 2020.
-
Abstract
- BackgroundA major challenge in controlling the COVID-19 pandemic is the high false-negative rate of the commonly used standard RT-PCR methods for SARS-CoV-2 detection in clinical samples. Accurate detection is particularly challenging in samples with low viral loads that are below the limit of detection (LoD) of standard one- or two-step RT-PCR methods.MethodsWe implement a three-step approach for SARS-CoV-2 detection and quantification that employs reverse transcription, targeted cDNA preamplification and nano-scale qPCR based on the Fluidigm 192.24 microfluidic chip. We validate the method using both positive controls and nasopharyngeal swab samples.ResultsUsing SARS-CoV-2 synthetic RNA and plasmid controls, we demonstrate that the addition of a preamplification step enhances the LoD of the Fluidigm method by 1,000-fold, enabling detection below 1 copy/μl. We applied this method to analyze 182 clinical NP swab samples previously diagnosed using a standard RT-qPCR protocol (91 positive, 91 negative) and demonstrate reproducible detection of SARS-CoV-2 over five orders of magnitude (< 1 to 106viral copies/μl). Crucially, we detect SARS-CoV-2 with relatively low viral load estimates (ConclusionThe three-step nano-scale RT-qPCR method can robustly detect SARS-CoV-2 in samples with relatively low viral loads (< 1 viral copy/μl) and has the potential to reduce the false negative rate of standard RT-PCR-based diagnostic tests for SARS-CoV-2 and other viral infections.SummaryWe test, implement and report the results of a microfluidic RT-qPCR assay system involving sequential RT, preamplification and nano-scale qPCR that can robustly detect SARS-CoV-2 in clinical samples with viral loads less than 1 copy/ul.
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi...........d9bcf50132230a73c8f6a7a4937944aa