Back to Search
Start Over
Pulsed current-assisted joining of copper to graphite using Ti-Cu brazing layers
- Source :
- Materials Today: Proceedings. 25:377-380
- Publication Year :
- 2020
- Publisher :
- Elsevier BV, 2020.
-
Abstract
- Copper-graphite joints are functional elements of many electronic and electromechanical devices. Unique properties of graphite, such as the ability to withstand high temperatures, a low friction coefficient and high thermal and electrical conductivities make it an attractive material for various applications. For enabling efficient heat sink or making sliding electrical contacts, graphite requires joining to metallic copper. Poor wettability between copper and graphite is a problem that needs to be overcome to form a reliable joint. In the present work, we used a Ti25Cu75 alloy to braze graphite to copper in a pulsed current-assisted process. Brazing was carried out in a Spark Plasma Sintering (SPS) apparatus under a uniaxial pressure of 13 MPa. The SPS conditions – a possibility of localized heating under an applied pressure in dynamic vacuum – are beneficial for the joining processes of conductive materials. For joining graphite and copper plates, a die-free configuration was used. The microstructure and the phase composition of the copper-graphite brazed joints were investigated. Strong joints were formed when the upper electrode temperature measured by a thermocouple reached 700 °C. At the graphite-alloy interface, a TiC layer 0.5–1 μm thick was formed; in addition, TiC particles were found in the metallic matrix in a layer 5–10 μm thick adjacent to the graphite plate. The tensile strength of the brazed joint was higher than the tensile strength of graphite (13 MPa).
- Subjects :
- 010302 applied physics
Materials science
Alloy
Spark plasma sintering
chemistry.chemical_element
02 engineering and technology
engineering.material
021001 nanoscience & nanotechnology
Microstructure
01 natural sciences
Copper
Electrical contacts
chemistry
0103 physical sciences
Ultimate tensile strength
engineering
Brazing
Graphite
Composite material
0210 nano-technology
Subjects
Details
- ISSN :
- 22147853
- Volume :
- 25
- Database :
- OpenAIRE
- Journal :
- Materials Today: Proceedings
- Accession number :
- edsair.doi...........d92d0a6dc4b7c64485e70332f298d99e
- Full Text :
- https://doi.org/10.1016/j.matpr.2019.12.095