Back to Search Start Over

Distortion Robust Relative Radiometric Normalization of Multitemporal and Multisensor Remote Sensing Images Using Image Features

Authors :
Armin Moghimi
Ali Mohammadzadeh
Turgay Celik
Amin Sarmadian
Meisam Amani
Huseyin Kusetogullari
Source :
IEEE Transactions on Geoscience and Remote Sensing. 60:1-20
Publication Year :
2022
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2022.

Abstract

In this article, we propose a novel framework to radiometrically correct unregistered multisensor image pairs based on the extracted feature points with the KAZE detector and the conditional probability (CP) process in the linear model fitting. In this method, the scale, rotation, and illumination invariant radiometric control set samples (SRII-RCSS) are first extracted by the blockwise KAZE strategy. They are then distributed uniformly over both textured and texture-less land use/land cover (LULC) using grid interpolation and a set of nearest-neighbors. Subsequently, SRII-RCSS are scored by a similarity measure, and the histogram of the scores is then used to refine SRII-RCSS. The normalized subject image is produced by adjusting the subject image to the reference image using the CP-based linear regression (CPLR) based on the optimal SRII-RCSS. The registered normalized image is finally generated by registration of the normalized subject image to the reference image through a two-pass registration method, namely affine-B-spline and, then, it is enhanced by updating the normalization coefficient of CPLR based on the SRII-RCSS. In this study, eight multitemporal data sets acquired by inter/intra satellite sensors were used in tests to comprehensively assess the efficiency of the proposed method. Experimental results show that the proposed method outperforms the existing state-of-the-art relative radiometric normalization (RRN) methods both qualitatively and quantitatively, indicating its capability for RRN of unregistered multisensor image pairs.

Details

ISSN :
15580644 and 01962892
Volume :
60
Database :
OpenAIRE
Journal :
IEEE Transactions on Geoscience and Remote Sensing
Accession number :
edsair.doi...........d8745c94e104ccbcefc073e60185a0dd
Full Text :
https://doi.org/10.1109/tgrs.2021.3063151