Back to Search Start Over

Fiber-type dependence of stretch-induced force enhancement in rat skeletal muscle

Authors :
Kathryn A. Ramsey
Gavin J. Pinniger
Anthony J. Bakker
Source :
Muscle & Nerve. 42:769-777
Publication Year :
2010
Publisher :
Wiley, 2010.

Abstract

When an active muscle is stretched, the force increases due to strain of contractile and noncontractile proteins. We examined this force enhancement in rat extensor digitorum longus (EDL) and soleus muscles, which differ in their composition of these proteins, and their susceptibility to damage. Small stretches were applied at different velocities during isometric contractions from which we quantified the velocity-dependent contractile and velocity-independent noncontractile contributions to force enhancement. Whereas the contractile contribution was significantly greater in soleus than EDL, the noncontractile force enhancement was significantly greater in EDL than soleus, and increased ≈6-fold after damaging eccentric contractions. The increased contractile stiffness may be functionally beneficial in slow muscle, as resistance to lengthening is fundamental to maintaining posture. Following stretch-induced muscle damage this capacity is compromised, leading to increased strain of noncontractile proteins that may facilitate the activation of signaling pathways involved in muscle adaptation to injury.

Details

ISSN :
0148639X
Volume :
42
Database :
OpenAIRE
Journal :
Muscle & Nerve
Accession number :
edsair.doi...........d86b1cec33650eb6a65511e84ef920df
Full Text :
https://doi.org/10.1002/mus.21744