Back to Search Start Over

Climbing rough vertical surfaces with hierarchical directional adhesion

Authors :
Laurel Fullerton
Alan T. Asbeck
Mark R. Cutkosky
Daniel Soto
Sanjay Dastoor
Barrett Heyneman
Noe Esparza
Aaron Parness
Source :
ICRA
Publication Year :
2009
Publisher :
IEEE, 2009.

Abstract

Prior research in biology and mechanics has shown the importance of hierarchy to the performance of dry adhesive systems on rough surfaces. The gecko utilizes several levels of hierarchy that operate on length scales from millimeters to 100s of nanometers in order to maneuver on smooth and rough vertical surfaces ranging from glass to rock. The gecko's hierarchical system serves two main purposes: it permits conformation to the surface for a large effective area of contact, and it distributes the load evenly among contacting elements. We present a new two-tiered directional adhesive system that provides these capabilities for a gecko-inspired climbing robot. The distal features consist of wedge-shaped structures with a base width of 50 µm and a height of approximately 180 µm. The wedges are mounted atop angled cylindrical features, 380 µm in diameter by approximately 1 mm long. Together, the proximal and distal features bend preferentially in the direction of inclination when loaded with a tangential force, achieving a combination of directional adhesion and conformation to rough surfaces. Using this system, a four legged robot that was previously restricted to climbing smooth surfaces is able to climb vertical surfaces such as a wood panels, painted metals, and plastics. On rougher surfaces, the two-tiered system improves adhesion by a factor of five compared to the wedge features alone. The hierarchical system also improved alignment and performance for large patch sizes.

Details

Database :
OpenAIRE
Journal :
2009 IEEE International Conference on Robotics and Automation
Accession number :
edsair.doi...........d7a5fbae20bfe6ae9f4338979e9ff6a2
Full Text :
https://doi.org/10.1109/robot.2009.5152864