Back to Search Start Over

Signatures of copy number alterations in human cancer

Authors :
Nischalan Pillay
Hames S
Ammal Abbasi
Azhar Khandekar
Van Loo P
Tom Lesluyes
Kerstin Haase
Adrienne M. Flanagan
Fredrik Mertens
Islam Asm
Maxime Tarabichi
Christopher D. Steele
Ludmil B. Alexandrov
Publication Year :
2021
Publisher :
Cold Spring Harbor Laboratory, 2021.

Abstract

The gains and losses of DNA that emerge as a consequence of mitotic errors and chromosomal instability are prevalent in cancer. These copy number alterations contribute to cancer initiaition, progression and therapeutic resistance. Here, we present a conceptual framework for examining the patterns of copy number alterations in human cancer using whole-genome sequencing, whole-exome sequencing, and SNP6 microarray data making it widely applicable to diverse datasets. Deploying this framework to 9,873 cancers representing 33 human cancer types from the TCGA project revealed a set of 19 copy number signatures that explain the copy number patterns of 93% of TCGA samples. 15 copy number signatures were attributed to biological processes of whole-genome doubling, aneuploidy, loss of heterozygosity, homologous recombination deficiency, and chromothripsis. The aetiology of four copy number signatures are unexplained and some cancer types have unique patterns of amplicon signatures associated with extrachromosomal DNA, disease-specific survival, and gains of proto-oncogenes such as MDM2. In contrast to base-scale mutational signatures, no copy number signature associated with known cancer risk factors. The results provide a foundation for exploring patterns of copy number changes in cancer genomes and synthesise the global landscape of copy number alterations in human cancer by revealing a diversity of mutational processes giving rise to copy number changes.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........d6f4e952b7e097bf87065c5665681894
Full Text :
https://doi.org/10.1101/2021.04.30.441940