Back to Search
Start Over
[Untitled]
- Source :
- Forests.
-
Abstract
- Forest growth and wood supply projections are increasingly used to estimate the future availability of woody biomass and the correlated effects on forests and climate. This research parameterizes an inventory-based business-as-usual wood supply scenario, with a focus on southwest Germany and the period 2002–2012 with a stratified prediction. First, the Classification and Regression Trees algorithm groups the inventory plots into strata with corresponding harvest probabilities. Second, Random Forest algorithms generate individual harvest probabilities for the plots of each stratum. Third, the plots with the highest individual probabilities are selected as harvested until the harvest probability of the stratum is fulfilled. Fourth, the harvested volume of these plots is predicted with a linear regression model trained on harvested plots only. To illustrate the pros and cons of this method, it is compared to a direct harvested volume prediction with linear regression, and a combination of logistic regression and linear regression. Direct harvested volume regression predicts comparable volume figures, but generates these volumes in a way that differs from business-as-usual. The logistic model achieves higher overall classification accuracies, but results in underestimations or overestimations of harvest shares for several subsets of the data. The stratified prediction method balances this shortcoming, and can be of general use for forest growth and timber supply projections from large-scale forest inventories.
- Subjects :
- 040101 forestry
Biomass (ecology)
010504 meteorology & atmospheric sciences
National forest inventory
Forestry
04 agricultural and veterinary sciences
Logistic regression
01 natural sciences
Regression
Business as usual
Random forest
Linear regression
Statistics
0401 agriculture, forestry, and fisheries
0105 earth and related environmental sciences
Stratum
Mathematics
Subjects
Details
- ISSN :
- 19994907
- Database :
- OpenAIRE
- Journal :
- Forests
- Accession number :
- edsair.doi...........d6611a3fa0f066e2c3c192e5d06336fb