Back to Search Start Over

Sequential Sulfometuron Methyl Applications in Eucalyptus benthamii Plantations

Authors :
Patrick J. Minogue
Anna Osiecka
Source :
Weed Technology. 29:243-254
Publication Year :
2015
Publisher :
Cambridge University Press (CUP), 2015.

Abstract

A study was conducted to refine herbicide rates for sequential applications of sulfometuron methyl over newly planted Eucalyptus benthamii seedlings in the Coastal Plain of the southeastern United States. Container-grown, 6-wk-old seedlings were planted in July 2011 on a nonbedded agricultural site in Quincy, FL and on a bedded forestry site in Wing, AL. Treatments included a single sulfometuron application at 13, 26, 39, or 52 g ha−1, 2 wk after planting; sequential applications at the same rates, 2 and 8 wk after planting; and a nontreated check. All sulfometuron treatments provided effective control of all vegetation groups at both sites, with the exception of 13 g ha−1 for forbs in Quincy. Sparse weed cover in Wing was eliminated by any sulfometuron treatment. In Quincy, two applications provided better weed control than a single one, resulting in more bare ground and less grass and vines. Bare ground increased with increasing sulfometuron rate from 0 to 26 g ha−1. The 26 g ha−1 rate resulted in 95 and 88% bare ground 6 and 12 wk after the first application, respectively, compared to 62 and 51%, respectively for the nontreated check. All sulfometuron treatments had a small positive effect on Eucalyptus seedling growth at the Quincy site, resulting in greater stem diameter (6.0 to 6.7 mm) than the nontreated check (5.0 mm), despite slight foliar necrosis. At the Wing site, in addition to slight foliar necrosis, sulfometuron decreased final seedling survival, height, and stem diameter (48 to 68%, 77.8 to 81.6 cm, and 8.7 to 9.2 mm, respectively), compared to the nontreated check (99%, 88.3 cm and 11.2 mm, respectively). Two sulfometuron applications at 13 to 26 g ha−1 provided selective weed control at both sites, but further refinement is needed for various Eucalyptus genotypes, soil, and vegetation types.

Details

ISSN :
15502740 and 0890037X
Volume :
29
Database :
OpenAIRE
Journal :
Weed Technology
Accession number :
edsair.doi...........d65fae65a262a05e14c958c38c296235
Full Text :
https://doi.org/10.1614/wt-d-14-00106.1