Back to Search
Start Over
X-Ray Crystallographic Structure of Hericium erinaceus Ribonuclease, RNase He1 in Complex with Zinc
- Source :
- Biological and Pharmaceutical Bulletin. 42:2054-2061
- Publication Year :
- 2019
- Publisher :
- Pharmaceutical Society of Japan, 2019.
-
Abstract
- RNase He1 is a guanylic acid-specific ribonuclease of the RNase T1 family from Hericium erinaceus (Japanese name: Yamabushitake). Its RNA degrading activity is strongly inhibited by Zn2+, similar to other T1 family RNases. However, RNase He1 shows little inhibition of human tumor cell proliferation, unlike RNase Po1, another T1 family RNase from Pleurotus ostreatus (Japanese name: Hiratake). Here, we determined the three-dimensional X-ray crystal structure of RNase He1 in complex with Zn, which revealed that Zn binding most likely prevents substrate entry into the active site due to steric hindrance. This could explain why RNase He1 and other T1 family RNases are inhibited by Zn. The X-ray crystal structures revealed that RNase He1 and RNase Po1 are almost identical in their catalytic sites and in the cysteine residues involved in disulfide bonds that increase their stability. However, our comparison of the electrostatic potentials of their molecular surfaces revealed that RNase He1 is negative whereas RNase Po1 is positive; thus, RNase He1 may not be able to electrostatically bind to the plasma membrane, potentially explaining why it does not exhibit antitumor activity. Hence, we suggest that the cationic characteristics of RNase Po1 are critical to the anti-tumor properties of the protein.
- Subjects :
- 0301 basic medicine
Pharmacology
chemistry.chemical_classification
biology
RNase P
Chemistry
Chemical structure
Pharmaceutical Science
Active site
RNA
General Medicine
biology.organism_classification
03 medical and health sciences
030104 developmental biology
0302 clinical medicine
Enzyme
Biochemistry
030220 oncology & carcinogenesis
biology.protein
Ribonuclease
Hericium erinaceus
Cysteine
Subjects
Details
- ISSN :
- 13475215 and 09186158
- Volume :
- 42
- Database :
- OpenAIRE
- Journal :
- Biological and Pharmaceutical Bulletin
- Accession number :
- edsair.doi...........d5a6446da4934072b34dfafd4b4ef960
- Full Text :
- https://doi.org/10.1248/bpb.b19-00532