Back to Search Start Over

Graphdiyne with Enhanced Ability for Electron Transfer

Authors :
Lijuan Zhang
Dan Wang
哈尔滨工业大学化工与化学学院,哈尔滨
Quan Jin
Yasong Zhao
Kaifeng Lin
Jian Qi
sup> 中国科学院过程工程研究所,北京 ,
Source :
Acta Physico-Chimica Sinica. 34:1048-1060
Publication Year :
2018
Publisher :
Acta Physico-Chimica Sinica & University Chemistry Editorial Office, Peking University, 2018.

Abstract

As a new member of the carbon allotrope family, graphdiynes (GDs) consist of both sp- and sp(2)-hybridized carbon atoms, possessing unique pi-conjugated carbon skeletons and expanded 18C-hexagonal pores in two dimensions. In contrast with the zero band gap graphene (GR), GD is a semiconductor with a direct band gap of 1.22 eV calculated according to the density functional theory (DFT) using the HSE06 method; this makes it a potential semiconductor material that can supplant silicon in the integrated circuit industry. Moreover, owing to the presence of diacetylenic linkages between its hexagonal carbon rings, GD shows electron-deficient properties, which lead to its electron-accepting tendency. Graphdiynes exhibit unusual semiconducting properties with excellent charge mobilities and electron transport properties that are associated with its distinct topological and electronic structures. Graphdiynes play the role of not only electron-acceptors that efficiently collect the electrons from other materials but also electron-donors that inject electrons into other systems, thus exhibiting excellent electron-transfer enhancement characteristics. The unique electron-transfer enhancement property of GDs inspired us to summarize the interactions between GDs and other materials including metal oxides, metal nano-particles, and organic molecules. In this review paper, we first introduce the TiO2/GD nanocomposite, because the linking of GDs and titania nanoparticles (P25) through the Ti-O-C bond sets an important precedent for exploring the electron-transfer behaviors involving GDs and the metal oxide. These results indicate that the GDs can act as acceptors of the photogenerated electrons in the TiO2/GD system, effectively suppressing charge recombination and resulting in excellent photocatalytic properties. Nevertheless, the GDs in CdSe quantum dots (QDs)/GD composites are able to collect photogenerated holes from the QDs and perform as promising hole-transfer materials in the photoelectrochemical cell for water splitting. As a result, the interactions between GDs and various metal compounds should be explored to deeply understand the electron-transfer properties of GDs. Furthermore, GDs can be also used as electron donors to reduce PdCl42- to Pd nanoparticles that can subsequently be used for the electroless deposition of highly dispersed Pd nanoparticles. Based on electrostatic potential surface analysis over the Pt-2/GD, GDs can attract the electron cloud from the Pt nanoparticles and produce a positive polarization of the metal atom surface. However, due to its large pi-conjugated system, GD can also collect and transfer electrons from the electrode under a bias voltage, making it a new type of electrocatalyst material, especially for single-atom catalysts. The interactions between GDs and metal particles/clusters/atoms have attracted the broad attention of the rapidly developing field of single-atom catalysis. Finally, research on the interactions between GDs and organic molecules, especially biomolecules, is still in its infancy and requires development. In summary, we overview the recent research progress on GD and its enhanced ability for electron transfer in this review paper, including metal oxides/GD, metal nano-particles/GD, polymers/GD, and organic molecules/GD, from both experimental and theoretical perspectives, and emphasize the interactions and electron-transfer enhancement properties.

Details

ISSN :
10006818
Volume :
34
Database :
OpenAIRE
Journal :
Acta Physico-Chimica Sinica
Accession number :
edsair.doi...........d49bd78a92c0c3a1ee4241d8ca788359
Full Text :
https://doi.org/10.3866/pku.whxb201802281