Back to Search
Start Over
A type-II GaSe/GeS heterobilayer with strain enhanced photovoltaic properties and external electric field effects
- Source :
- Journal of Materials Chemistry C. 8:89-97
- Publication Year :
- 2020
- Publisher :
- Royal Society of Chemistry (RSC), 2020.
-
Abstract
- Constructing two dimensional (2D) van der Waals (vdW) heterostructures and understanding their electronic properties are pivotal for developing novel electronic devices. In this work, by using the first-principles calculations, we theoretically demonstrate that the 2D GaSe/GeS van der Waals (vdW) heterobilayer is a robust type-II band alignment semiconductor with a direct band gap of 1.8 eV. It exhibits a remarkable absorbance coefficient of ∼105 cm−1 from the UV to visible light region and a high carrier mobility with anisotropic character. The photoelectric conversion efficiency (PCE) shows a tremendous enhancement under external strain, and shows an efficiency of up to ∼16.8% at 2% compressive strain. Besides, we find that applying an external electric field can effectively modulate its band gap and band offset. Interestingly, a larger external electric field can induce nearly free electron (NFE) states around the conduction band minimum (CBM) in the GaSe/GeS heterobilayer, which leads to the band transition from a semiconductor to metallic status. These results indicate that 2D GaSe/GeS heterostructures will have widespread application prospects in future photovoltaic and optoelectric nanodevices.
Details
- ISSN :
- 20507534 and 20507526
- Volume :
- 8
- Database :
- OpenAIRE
- Journal :
- Journal of Materials Chemistry C
- Accession number :
- edsair.doi...........d426a796d2dcec684905d96202c02be2