Back to Search Start Over

Heat Transfer Enhancement Through Impingement Surface Shape Modification

Authors :
Yacob M. Argaw
John P. Kizito
Source :
Volume 1A, Symposia: Advances in Fluids Engineering Education; Advances in Numerical Modeling for Turbomachinery Flow Optimization; Applications in CFD; Bio-Inspired Fluid Mechanics; CFD Verification and Validation; Development and Applications of Immersed Boundary Methods; DNS, LES, and Hybrid RANS/LES Methods.
Publication Year :
2013
Publisher :
American Society of Mechanical Engineers, 2013.

Abstract

Free stream flow past a heated wedge can be modeled and solved using Falkner-Skan equation when the wedge angle is within a limit. These types of flows at times, depending on the wedge angle or impingement direction, are referred to as Blasius and/or Hiemenz flows. When the impingement surface is constrained between walls from the side to create a cavity, these methods are no longer valid where the side walls significantly affect the flow field. We have used a numerical simulation to determine the effect of impingement shape described by wedge angle. The cooling process described by maximum heat flux with minimum surface temperature is the overall goal of the present study. The results show that the presence of side walls does affect the boundary layer of flow across the impingement surface. The results computed using similarity solution method in Matlab and a commercial CFD code simulation validates shape modification enhances the heat transfer process and the side wall’s effect is significant.Copyright © 2013 by ASME

Details

Database :
OpenAIRE
Journal :
Volume 1A, Symposia: Advances in Fluids Engineering Education; Advances in Numerical Modeling for Turbomachinery Flow Optimization; Applications in CFD; Bio-Inspired Fluid Mechanics; CFD Verification and Validation; Development and Applications of Immersed Boundary Methods; DNS, LES, and Hybrid RANS/LES Methods
Accession number :
edsair.doi...........d41d3b33ea385a241c6f695bfa9f3127
Full Text :
https://doi.org/10.1115/fedsm2013-16364