Back to Search Start Over

Novel bioreactor design for the culture of suspended mammalian cells. Part I: Mixing characterization

Authors :
María Irene Sánchez Cervantes
Fernando J. Muzzio
Justin Lacombe
Mario Moises Alvarez
Source :
Chemical Engineering Science. 61:8075-8084
Publication Year :
2006
Publisher :
Elsevier BV, 2006.

Abstract

Mammalian cells are extremely sensitive to mechanical stress. Ideally, a bioreactor design for mammalian cell culture should assure adequate mixing at low mechanical stress. This paper focuses on the mixing characterization of a novel stirred tank bioreactor configuration, proposed for the culture of mammalian cells, based on the principle of displacing the agitation shaft to an eccentric position and replacing the impellers normally used for mammalian cell culture with a disc impeller with no blades. Experiments in a 1.0 L prototype are conducted to study flow patterns using UV light visualization techniques. Three different impeller shaft positions are tested E = 0.0 , 0.21 , and 0.42. For the purposes of this work, eccentricity ( E ) is defined as the distance between the shaft and the vertical centerline of the tank/tank radius. The mixing performance of two different impeller disc diameters (3.0 and 5.0 cm) are compared. Experimental results show that adequate mixing conditions are achieved at very low Re numbers for some of the eccentric cases considered. Computations are used to illustrate mixing improvement caused by eccentricity, and to validate the existence of globally chaotic conditions for the eccentric cases tested experimentally.

Details

ISSN :
00092509
Volume :
61
Database :
OpenAIRE
Journal :
Chemical Engineering Science
Accession number :
edsair.doi...........d398428b9b65ead028488cfb81ddf137
Full Text :
https://doi.org/10.1016/j.ces.2006.09.035