Back to Search
Start Over
Content Based Image Retrieval System with a Combination of Rough Set and Support Vector Machine
- Source :
- Lecture Notes in Electrical Engineering ISBN: 9783319067636
- Publication Year :
- 2014
- Publisher :
- Springer International Publishing, 2014.
-
Abstract
- In this paper, a classifier based on a combination of Rough Set and 1-v-1 (one-versus-one) Support Vector Machine for Content Based Image Retrieval system is presented. Some problems of 1-v-1 Support Vector Machine can be reduced using Rough Set. With Rough Set, a 1-v-1 Support Vector Machine can provide good results when dealing with incomplete and uncertain data and features. In addition, boundary region in Rough Set can reduce the error rate. Storage requirements are reduced when compared to the conventional 1-v-1 Support Vector Machine. This classifier has better semantic interpretation of the classification process. We compare our Content Based Image Retrieval system with other image retrieval systems that uses neural network, K-nearest neighbour and Support Vector Machine as the classifier in their methodology. Experiments are carried out using a standard Corel dataset to test the accuracy and robustness of the proposed system. The experiment results show the proposed method can retrieve images more efficiently than other methods in comparison.
- Subjects :
- Structured support vector machine
business.industry
Computer science
Pattern recognition
Quadratic classifier
Content-based image retrieval
computer.software_genre
Support vector machine
Relevance vector machine
Margin classifier
Artificial intelligence
Rough set
Data mining
business
Image retrieval
computer
Subjects
Details
- ISBN :
- 978-3-319-06763-6
- ISBNs :
- 9783319067636
- Database :
- OpenAIRE
- Journal :
- Lecture Notes in Electrical Engineering ISBN: 9783319067636
- Accession number :
- edsair.doi...........d3444865b01966d2af84515b1f7ff45b
- Full Text :
- https://doi.org/10.1007/978-3-319-06764-3_20