Back to Search Start Over

On the Lpindex of spin Dirac operators on conical manifolds

Authors :
André Legrand
Sergiu Moroianu
Source :
Studia Mathematica. 177:97-112
Publication Year :
2006
Publisher :
Institute of Mathematics, Polish Academy of Sciences, 2006.

Abstract

We compute the index of the Dirac operator on a spin Riemannian manifold with conical singularities, acting from Lp(_+) to Lq(_-) with p, q > 1. When 1+n/p-n/q > 0 we obtain the usual Atiyah-Patodi-Singer formula, but with a spectral cut at (n + 1)/2 - n/q instead of 0 in the definition of the eta invariant. In particular we reprove Chou's formula for the L2 index. For 1+n/p-n/q _ 0 the index formula contains an extra term related to the Calderon projector.

Details

ISSN :
17306337 and 00393223
Volume :
177
Database :
OpenAIRE
Journal :
Studia Mathematica
Accession number :
edsair.doi...........d33ed5079935f21909f431e3df5a1eb0
Full Text :
https://doi.org/10.4064/sm177-2-1