Back to Search Start Over

The 102 Landslide: human–slope interaction in SE Tibet over a 20-year period

Authors :
Chang-Uk Hyun
Guangxiang Yuan
Zhifa Yang
Yanjun Shang
Hyeong-Dong Park
Source :
Environmental Earth Sciences. 76
Publication Year :
2016
Publisher :
Springer Science and Business Media LLC, 2016.

Abstract

The evolution of large-scale landslides should be studied because, over long periods of time, primary remediation measures may suffer reduced efficiency or have to be adjusted many times. The 102 Landslide in southeast Tibet, which originally formed in 1991 with a volume of 5.1 million m3 and still exhibits post-failure activity, provides a distinctive case study. The landslide evolved from earthquake destruction and unloading, rainfall-triggered sliding, and debris flow to sands sliding slopes. The NE ringed scarp receded by 38.96 m during a five-year period (2003–2008). The total recession was 160 m with a total area of 2500 m2 during a 17-year period (1991–2008). Although several types of remediation measures were applied and were temporarily effective, the normal function of the Sichuan–Tibet Highway was affected by landslide reactivation from time to time. Actual effects of the engineering measures such as retaining walls, prestressed anchor cables, and drainage ditches confirm that hasty governance of this type of large-scale landslide is generally unfeasible over long time periods. Finally, an approach involving a tunnel running backward from the front face has been adopted as a permanent solution to large-scale moraine slope failures: This engineering practice has been in progress since April 2012. This paper describes the evolution of the 102 Landslide, the engineering interventions to mitigate the effects of the landslide on the Sichuan–Tibet Highway, and the choice of tunneling as a final mitigation measure. The present study concludes that approaches that allow escape from developing geo-hazards should always be the initial choice.

Details

ISSN :
18666299 and 18666280
Volume :
76
Database :
OpenAIRE
Journal :
Environmental Earth Sciences
Accession number :
edsair.doi...........d28deac9fce3dd61619083d0297c0ebe
Full Text :
https://doi.org/10.1007/s12665-016-6365-z