Back to Search
Start Over
A gap theorem for positive Einstein metrics on the four-sphere
- Source :
- Mathematische Annalen. 373:1329-1339
- Publication Year :
- 2018
- Publisher :
- Springer Science and Business Media LLC, 2018.
-
Abstract
- We show that there exists a universal positive constant $$\varepsilon _0 > 0$$ with the following property: let g be a positive Einstein metric on the four-sphere $$S^4$$ . If the Yamabe constant of the conformal class [g] satisfies $$\begin{aligned} Y(S^4, [g]) >\frac{1}{\sqrt{3}} Y(S^4, [g_{\mathbb S}]) - \varepsilon _0\,, \end{aligned}$$ where $$g_{\mathbb S}$$ denotes the standard round metric on $$S^4$$ , then, up to rescaling, g is isometric to $$g_{\mathbb S}$$ . This is an extension of Gursky’s gap theorem for positive Einstein metrics on $$S^4$$ .
Details
- ISSN :
- 14321807 and 00255831
- Volume :
- 373
- Database :
- OpenAIRE
- Journal :
- Mathematische Annalen
- Accession number :
- edsair.doi...........d1ab8c82c6f566c44d971c696bf8c0bf