Back to Search Start Over

Facial Expression Recognition Algorithm Based on Gabor Texture Features and Adaboost Feature Selection via Sparse Representation

Authors :
Zi Lu Ying
Qing Wei Wang
Source :
Applied Mechanics and Materials. :433-436
Publication Year :
2014
Publisher :
Trans Tech Publications, Ltd., 2014.

Abstract

This paper proposed a new facial expression recognition algorithm based on gabor texture features and Adaboost feature selection via SRC(sparse representation classification). Five scales and eight orientations of Gabor wavelet filters were used in this paper to extract gabor features. For an image of size , the number of gabor features is 163840, In order to extract the most effective features for FER(facial expression recognition), Adaboost algorithm is used for feature selection. This paper divided 7 facial expressions into two categories, where the neutral expression as the first class and the remaining six expressions as the second class. In each size and orientation 110 features are selected. At last 4400 features are selected combined SRC algorithm for FER. Test experiments were performed on Japanese female JAFFE facial expression database. Compared with the traditional expression recognition algorithms such as 2DPCA+SVM, LDA+SVM, the new algorithm achieved a better recognition rate, which shows the effectiveness of the proposed new algorithm.

Details

ISSN :
16627482
Database :
OpenAIRE
Journal :
Applied Mechanics and Materials
Accession number :
edsair.doi...........d1206a37ae469b16847da51afbeac007