Back to Search Start Over

Sequence Kernel Association Test for Survival Traits

Authors :
Nancy L. Heard-Costa
Caroline S. Fox
Han Chen
L. Adrienne Cupples
Thomas Lumley
Josée Dupuis
Jennifer A. Brody
Source :
Genetic Epidemiology. 38:191-197
Publication Year :
2014
Publisher :
Wiley, 2014.

Abstract

Rare variant tests have been of great interest in testing genetic associations with diseases and disease-related quantitative traits in recent years. Among these tests, the sequence kernel association test (SKAT) is an omnibus test for effects of rare genetic variants, in a linear or logistic regression framework. It is often described as a variance component test treating the genotypic effects as random. When the linear kernel is used, its test statistic can be expressed as a weighted sum of single-marker score test statistics. In this paper, we extend the test to survival phenotypes in a Cox regression framework. Because of the anticonservative small-sample performance of the score test in a Cox model, we substitute signed square-root likelihood ratio statistics for the score statistics, and confirm that the small-sample control of type I error is greatly improved. This test can also be applied in meta-analysis. We show in our simulation studies that this test has superior statistical power except in a few specific scenarios, as compared to burden tests in a Cox model. We also present results in an application to time-to-obesity using genotypes from Framingham Heart Study SNP Health Association Resource.

Details

ISSN :
07410395
Volume :
38
Database :
OpenAIRE
Journal :
Genetic Epidemiology
Accession number :
edsair.doi...........d086e79c8b0dedee4d574122735bc635
Full Text :
https://doi.org/10.1002/gepi.21791