Back to Search
Start Over
Half-sandwich ruthenium, rhodium and iridium complexes featuring oxime ligands: Structural studies and preliminary investigation of in vitro and in vivo anti-tumour activities
- Source :
- Applied Organometallic Chemistry. 31:e3640
- Publication Year :
- 2016
- Publisher :
- Wiley, 2016.
-
Abstract
- Half‐sandwich ruthenium, rhodium and iridium complexes (1–12) were synthesised with aldoxime (L1), ketoxime (L2) and amidoxime (L3) ligands. Ligands have the general formula [PyC(R)NOH], where R = H (L1), R = CH3 (L2) and R = NH2 (L3). Reaction of [{(arene)MCl2}2] (arene = p‐cymene, benzene, Cp*; M = Ru, Rh, Ir) with ligands L1–L3 in 1:2 metal precursor‐to‐ligand ratio yielded complexes such as [{(arena)MLκ2(N∩N)Cl}]PF6. All the ligands act as bidentate chelating nitrogen donors in κ2 (N∩N) fashion while forming complexes. In vitro anti‐tumour activity of complexes 2 and 10 against HT‐29 (human colorectal cancer), BE (human colorectal cancer) and MIA PaCa‐2 (human pancreatic cancer) cell lines and non‐cancer cell line ARPE‐19 (human retinal epithelial cells) revealed a comparable activity although complex 2 demonstrated greater selectivity for MIA PaCa‐2 cells than cisplatin. Further studies demonstrated that complexes 3, 6, 9 and 12 induced significant apoptosis in Dalton's ascites lymphoma (DL) cells. In vivo anti‐tumour activity of complex 2 on DL‐bearing mice revealed a statistically significant anti tumour activity (P = 0.0052). Complexes 1–12 exhibit HOMO–LUMO energy gaps from 3.31 to 3.68 eV. Time‐dependent density functional theory calculations explain the nature of electronic transitions and were in good agreement with experiments.
Details
- ISSN :
- 02682605
- Volume :
- 31
- Database :
- OpenAIRE
- Journal :
- Applied Organometallic Chemistry
- Accession number :
- edsair.doi...........ce676a758a8cdd609265ef0d1d98056b