Back to Search Start Over

Scattering theory for Jacobi operators and applications to completely integrable systems

Authors :
Michor, Johanna
Publication Year :
2005

Abstract

In der vorliegenden Arbeit wird die direkte und inverse Streutheorie fuer Jacobioperatoren entwickelt, die kurzreichweitige Perturbationen von quasi-periodischen finite-gap Operatoren sind. Wir zeigen Existenz des Transformationsoperators, untersuchen dessen Eigenschaften, leiten die Gel'fand-Levitan-Marchenko Gleichung her und geben minimale Streudaten an, die den gestoerten Operator eindeutig beschreiben. Weiters wird das zugehoerige Anfangswertproblem der Todahierachie mittels der inversen Streutransformation geloest.<br />In this thesis we develop direct and inverse scattering theory for Jacobi operators which are short range perturbations of quasi-periodic finite-gap operators. We show existence of transformation operators, investigate their properties, derive the corresponding Gel'fand-Levitan-Marchenko equation, and find minimal scattering data which determine the perturbed operator uniquely. Then we apply this knowledge to solve the associated initial value problem of the Toda hierarchy via the inverse scattering transform.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi...........cda8f1300b8750d3ad59e19a5e9b0fce
Full Text :
https://doi.org/10.25365/thesis.767