Back to Search Start Over

Finite element analysis of natural fiber composites using a self-updating model

Authors :
Andreas Öchsner
Wayne Hall
Zia Javanbakht
Amandeep Singh Virk
John Summerscales
Source :
Journal of Composite Materials. 54:3275-3286
Publication Year :
2020
Publisher :
SAGE Publications, 2020.

Abstract

The aim of the current work was to illustrate the effect of the fibre area correction factor on the results of modelling natural fibre-reinforced composites. A mesoscopic approach is adopted to represent the stochastic heterogeneity of the composite, i.e. a meso-structural numerical model was prototyped using the finite element method including quasi-unidirectional discrete fibre elements embedded in a matrix. The model was verified by the experimental results from previous work on jute fibres but is extendable to every natural fibre with cross-sectional non-uniformity. A correction factor was suggested to fine-tune both the analytical and numerical models. Moreover, a model updating technique for considering the size-effect of fibres is introduced and its implementation was automated by means of FORTRAN subroutines and Python scripts. It was shown that correcting and updating the fibre strength is critical to obtain accurate macroscopic response of the composite when discrete modelling of fibres is intended. Based on the current study, it is found that consideration of the effect of flaws on the strength of natural fibres and inclusion of the fibre area correction factor are crucial to obtain realistic results.

Details

ISSN :
1530793X and 00219983
Volume :
54
Database :
OpenAIRE
Journal :
Journal of Composite Materials
Accession number :
edsair.doi...........cd33fd1d7d6e06f1a67d1a08f099547c