Back to Search Start Over

Supplementary Material from 'A mechanistic hydro-epidemiological model of liver fluke risk'

Authors :
Beltrame, Ludovica
Dunne, Toby
Vineer, Hannah Rose
Walker, Josephine G.
Morgan, Eric R.
Vickerman, Peter
McCann, Catherine M.
Williams, Diana J. L.
Wagener, Thorsten
Publisher :
The Royal Society

Abstract

The majority of existing models for predicting disease risk in response to climate change are empirical. These models exploit correlations between historical data, rather than explicitly describing relationships between cause and response variables. Therefore, they are unsuitable for capturing impacts beyond historically observed variability and have limited ability to guide interventions. In this study, we integrate environmental and epidemiological processes into a new mechanistic model, taking the widespread parasitic disease of fasciolosis as an example. The model simulates environmental suitability for disease transmission at a daily time step and 25 m resolution, explicitly linking the parasite life cycle to key weather-water-environment conditions. Using epidemiological data, we show that the model can reproduce observed infection levels in time and space for two case studies in the UK. To overcome data limitations, we propose a calibration approach combining Monte Carlo sampling and expert opinion, which allows constraint of the model in a process-based way, including a quantification of uncertainty. The simulated disease dynamics agree with information from the literature, and comparison with a widely-used empirical risk index shows that the new model provides better insight into the time-space patterns of infection, which will be valuable for decision support.

Subjects

Subjects :
13. Climate action
3. Good health

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........cc8c89507c884ee3c5ce1aa2c6be620b