Back to Search
Start Over
A novel and selective multi-emission chemiluminescence system for the quantification of deltamethrin in food samples
- Source :
- Sensors and Actuators B: Chemical. 327:128927
- Publication Year :
- 2021
- Publisher :
- Elsevier BV, 2021.
-
Abstract
- A paper-based analytical device (PADs) combined with a powerful chemiluminescence (CL) system was established for the determination of deltamethrin (DM), based on the enhancing effect of polyphosphate (PP) on graphene quantum dots (GQDs)-KMnO4 CL reaction. A possible mechanism for the obtained emission was proposed using the CL spectra, fluorescence and ultraviolet-visible patterns. The reaction of KMnO4 and GQDs can lead to generation of GQDs in excited state (GQDs*), which can emit at 490 nm. Interestingly, PP changes the CL mechanism and the main emitter becomes Mn2+ instead of GQDs leading to a strong emission at 695 nm. Furthermore, the obtained multi-emission CL system was examined for analytical applications. The initial experiments showed that the amplified CL emission of the GQDs-KMnO4 system was selectively quenched in the presence of trace levels of DM, probably due to its effective interaction with GQDs or reaction with KMnO4. This observation led to a facile, reliable and sensitive PADs-CL probe, developed for the determination of DM residue in food samples. Using this CL system and under the optimized experimental conditions, the generated signal is decreased by increasing DM concentration in the range of 0.3−10 μg mL-1 with limit of detection (LOD) of 0.15 μg mL-1.
- Subjects :
- Analytical chemistry
02 engineering and technology
010402 general chemistry
01 natural sciences
Spectral line
law.invention
chemistry.chemical_compound
law
Materials Chemistry
Electrical and Electronic Engineering
Instrumentation
Chemiluminescence
Detection limit
Graphene
Polyphosphate
Metals and Alloys
021001 nanoscience & nanotechnology
Condensed Matter Physics
Fluorescence
0104 chemical sciences
Surfaces, Coatings and Films
Electronic, Optical and Magnetic Materials
chemistry
Quantum dot
Excited state
0210 nano-technology
Subjects
Details
- ISSN :
- 09254005
- Volume :
- 327
- Database :
- OpenAIRE
- Journal :
- Sensors and Actuators B: Chemical
- Accession number :
- edsair.doi...........cc610480c6121e3c3de700b7a7da22ad