Back to Search Start Over

High Selectivity to HCl for the Catalytic Removal of 1,2-Dichloroethane Over RuP/3DOM WOx: Insights into the Effects of P-Doping and H2O Introduction

Authors :
Lingyun Dai
Yue Peng
Xiaohui Yu
Zhiquan Hou
Lin Jing
Hongxing Dai
Yuxi Liu
Xing Zhang
Jiguang Deng
Jia Wang
Source :
Environmental Science & Technology. 55:14906-14916
Publication Year :
2021
Publisher :
American Chemical Society (ACS), 2021.

Abstract

Ru-based catalysts for catalytic combustion of high-toxicity Cl-containing volatile organic compounds are inclined to produce Cl2 instead of ideal HCl due to the Deacon reaction. We herein reported that the three-dimensionally ordered macroporous (3DOM) WOx-supported RuP nanocatalyst greatly improved HCl selectivity (at 400 °C, increased from 66.0% over Ru/3DOM WOx to 96.4% over RuP/3DOM WOx) and reduced chlorine-containing byproducts for 1,2-dichloroethane (1,2-DCE) oxidation. P-doping enhanced the number of structural hydroxyl groups and Bronsted acid sites. The isotopic 1,2-DCE temperature-programmed desorption experiment in the presence of H218O indicated the generation of a new active oxygen species 16O18O that participated in the reaction. Generally, P-doping and H2O introduction could promote the exchange reaction between Cl and hydroxyl groups, rather than oxygen defects, and then benefit the production of HCl and reduce the generation of other chlorine species or Cl2, via the reaction processes of C2H3Cl → alcohol → aldehyde → carboxylic acids.

Details

ISSN :
15205851 and 0013936X
Volume :
55
Database :
OpenAIRE
Journal :
Environmental Science & Technology
Accession number :
edsair.doi...........cb542f6ba043aa238fef458ed844d47f