Back to Search Start Over

A unified model for transient subglacial water pressure and basal sliding

Authors :
Laurence C. Smith
Alex S. Gardner
Helene Seroussi
Victor C. Tsai
Source :
Journal of Glaciology. 68:390-400
Publication Year :
2021
Publisher :
Cambridge University Press (CUP), 2021.

Abstract

Changes in water pressure at the beds of glaciers greatly modify their sliding rate, affecting rates of ice mass loss and sea level change. However, there is still no agreement about the physics of subglacial sliding or how water affects it. Here, we present a new simplified physical model for the effect of transient subglacial hydrology on basal ice velocity. This model assumes that a fraction of the glacier bed is connected by an active hydrologic system that, when averaged over an appropriate scale, is governed by two parameters with limited spatial variability. The sliding model is reminiscent of Budd's empirical sliding law but with fundamental differences including a dependence on the fractional area of the active hydrologic system. With periodic surface meltwater forcing, the model displays classic diffusion-wave behavior, with a downstream time lag and decay of subglacial water pressure perturbations. Testing the model against Greenland observations suggests that, despite its simplicity, it captures key features of observed proglacial discharges and ice velocities with reasonable physical parameter values. Given these encouraging findings, including this sliding model in predictive ice-sheet models may improve their ability to predict time-evolving velocities and associated sea level change and reduce the related uncertainties.

Details

ISSN :
17275652 and 00221430
Volume :
68
Database :
OpenAIRE
Journal :
Journal of Glaciology
Accession number :
edsair.doi...........cb06b166da945245bc17733423f2d3e5