Back to Search Start Over

New Insights on Near-Infrared Emitters Based on Er-quinolinolate Complexes: Synthesis, Characterization, Structural, and Photophysical Properties

Authors :
Antonio Andrea Mura
Luciano Marchiò
Giovanni Bongiovanni
Romano V. A. Orru
Flavia Artizzu
Francesco Quochi
Angela Serpe
Fabrizio Cordella
Maria Laura Mercuri
Paola Deplano
Luca Pilia
Michele Saba
Source :
Advanced Functional Materials. 17:2365-2376
Publication Year :
2007
Publisher :
Wiley, 2007.

Abstract

Erbium quinolinolates, commonly assumed to be mononuclear species with octahedral co-ordination geometry, have been proposed as promising materials for photonic devices but difficulties in obtaining well defined products have so far limited their use. We report here the conditions to obtain in high yields three different kinds of pure neutral erbium quinolinolates by mixing an erbium salt with 8-quinolinol (HQ) and 5,7-dihalo-8-quinolinol (H5,7XQ: X=Cl and Br): i) the trinuclear complex Er 3 Q 9 (1) which is obtained with HQ deprotonated by NH 3 in water or ethanol/water mixtures; ii) the already known dimeric complexes based on the unit [Er(5,7XQ) 3 (H 2 O) 2 ] [X=Cl (2) and Br (3)]; iii) the mononuclear [Er(5,7XQ)2(H5,7XQ) 2 Cl] [X= Cl (4) and Br (5)] complexes, obtained in organic solvents without base addition, where the ion results coordinated to four ligands, two deprotonated chelating, and two as zwitterionic monodentate oxygen donors. These results represent a further progress with respect to a recent reinvestigation on this reaction, which has shown that obtaining pure and anhydrous octahedral ErQ 3 , the expected reaction product, is virtually impossible, but failed in the isolation of 1 and of the neutral tetrakis species based on H5,7XQ ligands. Structural data provide a detailed description of the molecules and of their packing which involves short contacts between quinoxaline ligands, due to π-π interactions. Electronic and vibrational studies allow to select the fingerprints to distinguish the different products and to identify the presence of water. The structure/property relationship furnishes a satisfactory interpretation of the photo-physical properties. Experimental evidence confirms that the most important quenchers for the erbium emission are the coordinated water molecules and shows that the ligand emission is significantly affected by the π-π interactions.

Details

ISSN :
1616301X
Volume :
17
Database :
OpenAIRE
Journal :
Advanced Functional Materials
Accession number :
edsair.doi...........cae53365eb99eb4f8c8d4254afdffc8a
Full Text :
https://doi.org/10.1002/adfm.200600926