Back to Search Start Over

Choi–Davis–Jensen’s type trace inequalities for convex functions of self-adjoint operators in Hilbert spaces

Authors :
Hosna Jafarmanesh
Tayebeh Lal Shateri
Silvestru Sever Dragomir
Source :
Boletín de la Sociedad Matemática Mexicana. 26:1195-1215
Publication Year :
2020
Publisher :
Springer Science and Business Media LLC, 2020.

Abstract

Some Choi–Davis–Jensen’s type trace inequalities for convex functions are proved. Also, we generalize these inequalities for any arbitrary operator mean via operator monotone decreasing functions. In particular, we present some new order among $$\mathrm{tr}(\Phi (C)A)$$ and $$\mathrm{tr}(\Phi (C)A^{-1})$$ . New refinements of some power type trace inequalities via reverse and refinement of Young’s inequality are established. Among our results, we obtain new versions of the Holder type trace inequality for any arbitrary operator mean.

Details

ISSN :
22964495 and 1405213X
Volume :
26
Database :
OpenAIRE
Journal :
Boletín de la Sociedad Matemática Mexicana
Accession number :
edsair.doi...........cad4ec2ca9ba14182fb23ff0bdb763e1