Back to Search
Start Over
Upper bounds for eigenvalues of Cauchy-Hankel tensors
- Source :
- Frontiers of Mathematics in China. 16:1023-1041
- Publication Year :
- 2021
- Publisher :
- Springer Science and Business Media LLC, 2021.
-
Abstract
- We present upper bounds of eigenvalues for finite and infinite dimensional Cauchy-Hankel tensors. It is proved that an m-order infinite dimensional Cauchy-Hankel tensor defines a bounded and positively (m − 1)-homogeneous operator from l1 into lp (1 < p < ∞), and two upper bounds of corresponding positively homogeneous operator norms are given. Moreover, for a fourth-order real partially symmetric Cauchy-Hankel tensor, sufficient and necessary conditions of M-positive definiteness are obtained, and an upper bound of M-eigenvalue is also shown.
Details
- ISSN :
- 16733576 and 16733452
- Volume :
- 16
- Database :
- OpenAIRE
- Journal :
- Frontiers of Mathematics in China
- Accession number :
- edsair.doi...........cacbf0fa8d10df4ecd6e024012a8034a