Back to Search Start Over

MoSx–Co3O4 Nanocomposite for Selective Determination of Ascorbic Acid

Authors :
Ayman Nafady
Sidra Amin
Amber R. Solangi
Aneela Tahira
Zafar Hussain Ibupoto
Source :
Journal of Nanoscience and Nanotechnology. 21:2595-2603
Publication Year :
2021
Publisher :
American Scientific Publishers, 2021.

Abstract

Designing a nanocomposite with sensitive and selective determination of ascorbic acid is challenging task. It is possible through the exploitation of attractive features of nanoscience and nanotechnology for the synthesis of nanostructured materials. Herein, we report the decoration of nanoparticle of MoSx on the surface of Co3O4 nanowires by hydrothermal method. The MoSx nanoparticles shared the large surface on the Co3O4 nanowires, thus it supported in the development enzyme free ascorbic acid sensor. Non-enzymatic sensor based on MoSx-Co3O4 composite was found very selective for the determination of ascorbic acid (AA) in phosphate buffer solution of pH 7.4. The MoSx-Co3O4 nanocomposite was used to modify the glassy carbon electrode to measure AA from variety of practical samples. The MoSx-Co3O4 nanocomposite was used to modify the glassy carbon electrode and it has shown the attractive analytical features such as a low working potential +0.3 V, linear range of concentration from 100–7000 μM, low limit of detection 14 μM, and low limit of quantification (LOQ) of 42 μM. The developed sensor is highly selective and stable. Importantly, it was applied successfully for the practical applications such as detection of AA from grapefruit, tomato and lemon juice. The excellent electrochemical properties of fabricated MoSx-Co3O4 nanocomposite can be attributed to the increasing electro active surface area of MoSx. The presented nanocomposite is earth abundant, environment friendly and inexpensive and it holds promising features for the selective and sensitive determination of AA from practical applications. The nanocomposite can be capitalized into the wide range of biomedical applications.

Details

ISSN :
15334880
Volume :
21
Database :
OpenAIRE
Journal :
Journal of Nanoscience and Nanotechnology
Accession number :
edsair.doi...........ca7f7a37446bf7006037a0e74bb97510
Full Text :
https://doi.org/10.1166/jnn.2021.19126