Back to Search Start Over

Electrochemical determination of glutamic pyruvic transaminase using a microfluidic chip

Authors :
Junshan Liu
Hong-qun Zou
Zheng Xu
Shuai-long Hu
Da-zhi Wang
Liding Wang
Jing Wang
Source :
Microfluidics and Nanofluidics. 21
Publication Year :
2017
Publisher :
Springer Science and Business Media LLC, 2017.

Abstract

The activity of glutamic pyruvic transaminase (GPT) is an important clinical evidence for some acute diseases such as acute hepatopathy and myocardial infarction. Thus, there is a demand for rapid determination of GPT in small formats at point-of-need. Herein, we describe a novel method of electrochemical determination of GPT with microfluidic technique. GPT activity was indirectly determined via the electrochemical (EC) detection of nicotinamide adenine dinucleotide (NADH) produced from the GPT transdeamination reaction. A type of microfluidic chip was developed, in which a passive mixer comprising 100 sub-ribs and a three-electrode strip for EC were integrated. To verify the response to NADH, a series of NADH concentrations varying from 19 µM to 5 mM were calibrated with cyclic voltammetry within the microfluidic chip. And a linear relationship with R 2 0.9982 between the peak current and the concentration of NADH was obtained. Then, the GPT activity was determined using the chips containing and not containing a ribs-type mixer. And a linear relationship which contained two sections between the GPT activity and the peak current was obtained. The chip with a ribs-type mixer exhibited the sensitivity of 0.0341 μA U−1 L in the range of 10–50 U L−1 and 0.0236 μA U−1 L in the range of 50–250 U L−1. And the detection limit of the chip with a ribs-type mixer was 9.25 U L−1. The complete detection process of GPT activity within the microfluidic chip was realized, and the time-consuming problem was remarkably improved too.

Details

ISSN :
16134990 and 16134982
Volume :
21
Database :
OpenAIRE
Journal :
Microfluidics and Nanofluidics
Accession number :
edsair.doi...........c9dd2cf1db708267f299dc9d8edf99e5
Full Text :
https://doi.org/10.1007/s10404-017-1869-8