Back to Search
Start Over
Preparation and properties of hydrophobic layered silicate-reinforced UV-curable poly(urethane acrylate) nanocomposite films for packaging applications
- Source :
- Progress in Organic Coatings. 77:1045-1052
- Publication Year :
- 2014
- Publisher :
- Elsevier BV, 2014.
-
Abstract
- A series of poly(urethane acrylate)/Cloisite 15A (PUA/C15A) nanocomposite films were successfully prepared via a UV-curing system, and their physical and barrier properties were investigated as a function of clay content. The physical properties were strongly dependent upon the chemical and morphological structures originating from differences in Cloisite 15A content. With high clay content, the PUA/C15A nanocomposite films displayed an intercalation/exfoliation combined structure. However, no strong interfacial interactions occurred between the PUA and clay, possibly leading to poor dispersion with relatively high clay content. The thermal stability displayed some enhancement with the introduction of clay into PUA, while the gas and moisture barrier properties showed significant enhancement. The oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) decreased with increasing contents of Cloisite 15A, and varied within the range of 714.0–71.1 cm3/m2 day and 29.9–13.9 g/m2 day, respectively. Thus the enhanced gas and moisture barrier properties of PUA/C15A nanocomposite films make them promising candidates for food and pharmaceutical packaging applications. However, further studies will be performed to increase the compatibility and dispersion of clay particles in the PUA polymer matrix.
- Subjects :
- chemistry.chemical_classification
Nanocomposite
Materials science
General Chemical Engineering
Organic Chemistry
Intercalation (chemistry)
Polymer
Exfoliation joint
Silicate
Surfaces, Coatings and Films
chemistry.chemical_compound
Oxygen transmission rate
chemistry
Materials Chemistry
Thermal stability
Composite material
Dispersion (chemistry)
Subjects
Details
- ISSN :
- 03009440
- Volume :
- 77
- Database :
- OpenAIRE
- Journal :
- Progress in Organic Coatings
- Accession number :
- edsair.doi...........c99c2cc70a3b69211940c9a185d0a0a4
- Full Text :
- https://doi.org/10.1016/j.porgcoat.2014.03.007