Back to Search Start Over

Laterally actuated nanoelectromechanical relays with compliant, low resistance contact

Authors :
Hon-Sum Philip Wong
Mohammad Shavezipur
Subhasish Mitra
W. S. Lee
J. Provine
Kimberly L. Harrison
Roger T. Howe
Source :
2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS).
Publication Year :
2013
Publisher :
IEEE, 2013.

Abstract

Laterally actuated nanoelectromechanical relays with compliant source-drain contacts are presented. The relay sidewalls are coated with a 30 nm-thick conductive layer of titanium nitride (TiN) deposited using atomic layer deposition (ALD). By hollowing the tip of the relay, a flexible sidewall is formed from the thin TiN that results in a larger contact area and therefore improves the contact properties of the relay. This modification improves the on-state resistance (RON) and also provides better stability over a larger number of switching cycles compared to a rigid contact. The results of life-time tests show that the contact resistance increases with the number of switching cycles possibly due to degradation of the contact material. However, flexible contacts show improved contact resistance stability under cyclic contact.

Details

Database :
OpenAIRE
Journal :
2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS)
Accession number :
edsair.doi...........c8fc590218245c5f864a097859ae1858