Back to Search Start Over

Reactive Oxygen Species Release, Alkylating Ability, and DNA Interactions of a Pterocarpanquinone: A Test Case for Electrochemistry

Authors :
Marília O. F. Goulart
Thaissa L. Silva
Chaquip D. Netto
Fabricia da Rocha Ferreira
Paulo R. R. Costa
Camila Calado de Vasconcelos
Rosanny Christhinny Da Silva
Dimas J. P. Lima
Source :
ChemElectroChem. 3:2252-2263
Publication Year :
2016
Publisher :
Wiley, 2016.

Abstract

The electrochemistry of a redox-based bioactive pterocarpanquinone, designated as LQB-118, and its precursor chromenquinone (CQ) was investigated in protic and aprotic media with a focus on the reduction mechanism in both media, the reactivity with oxygen, and the interaction with biological targets, such as DNA. UV/Vis spectroelectrochemistry clarified the proposed mechanism. The appearance of bands at λ=331, 400, and 600 nm suggests the generation of transient quinonemethides (QM). Electrochemical experiments revealed homogeneous electron transfer to oxygen. LQB-118 itself interacts with calf-thymus DNA and ssDNA in solution. It, and its electrogenerated intermediates, have been shown to decrease the diagnostic oxidation peaks of guanosine and adenosine residues. These results, together with electrochemical evidence for the formation of QMs and the reductive addition of thiols, partly explain the reported cytotoxic and parasiticidal effects of this quinone. Overall, the electrochemical methods do well to predict the molecular mechanism of the biological activity of the present class of compounds. As an additional competitive advantage, electrochemistry allows reductive cleavage in situ, the characterization of the generated intermediate, the calculation of the number of transferred electrons, and positively mimics in vitro and in vivo experiments.

Details

ISSN :
21960216
Volume :
3
Database :
OpenAIRE
Journal :
ChemElectroChem
Accession number :
edsair.doi...........c87cf9636a04b24ed235a8069003ea34
Full Text :
https://doi.org/10.1002/celc.201600504