Back to Search
Start Over
Portable standoff Raman and Mie-Rayleigh lidar for cloud, aerosol, and chemical monitoring
- Source :
- SPIE Proceedings.
- Publication Year :
- 2003
- Publisher :
- SPIE, 2003.
-
Abstract
- There is a need for portable, low-cost lidar systems that can be used for cloud, aerosols and chemical monitoring from a stand-off distance. At the University of Hawaii we have developed lidar systems based on a 12.7-cm diameter telescope and a 20 Hz frequency-doubled Nd:YAG laser source. For stand off Raman detection of organic liquid and vapors, and plastic explosives, we are using a 0.25-m HoloSpec f/2.2 spectrometer equipped with a gated intensified detector (PI Model I-MAX-1024-E). The samples of interest are excited with 532-nm laser light (35 mJ/pulse). The operational range of the Raman system is in 10's of meters and has been tested at distance of 66 m. This system can also be operated as a Raman lidar by using appropriate filters for atmospheric nitrogen, oxygen and other gaseous species of interest. The Mie-Rayleigh lidar system uses the same telescope and laser, but we have three (1064, 532 and 355-nm) wavelengths available for monitoring clouds and aerosols. A small Hamamatsu H6779 photomultiplier tube (PMT) located near the focal point of telescope detects 532-nm backscatter signal. An avalanche photodiode (APD, EG & G C3095) detector equipped with a 2.5-cm diameter aspheric lens is used for detecting 1064-nm backscatter. The Mie-Rayleigh lidar has usable range of 60 - 4000 m. Results obtained with this system for marine aerosols and clouds are discussed.
Details
- ISSN :
- 0277786X
- Database :
- OpenAIRE
- Journal :
- SPIE Proceedings
- Accession number :
- edsair.doi...........c850fe286f5ee8f39f6f5dde8aab8c66
- Full Text :
- https://doi.org/10.1117/12.509197